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Abstract

An analysis of stability and chaotic dynamics is presented by a single-axis rate gyro subjected to linear
feedback control loops. This rate gyro is supposed to be mounted on a space vehicle which undergoes an
uncertain angular velocity oZðtÞ around its spin axis. And simultaneously acceleration ’oX ðtÞ occurs with
respect to the output axis. The necessary and sufficient conditions of stability for the autonomous case,
whose vehicle undergoes a steady rotation, were provided by Routh–Hurwitz theory. Also, the degeneracy
conditions of the non-hyperbolic point were derived and the dynamics of the resulting system on the center
manifold near the double-zero degenerate point by using center manifold and normal form methods were
examined. The stability of the non-linear non-autonomous system was investigated by Liapunov stability
and instability theorems. As the electrical time constant is much smaller than the mechanical time constant,
the singularly perturbed system can be obtained by the singular perturbation theory. The Liapunov stability
of this system by studying the reduced and boundary-layer systems was also analyzed. Numerical
simulations were performed to verify the analytical results. The stable regions of the autonomous system
were obtained in parametric diagrams. For the non-autonomous case in which oZðtÞ oscillates near
boundary of stability, periodic, quasiperiodic and chaotic motions were demonstrated by using time
history, phase plane and Poincar!e maps.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The field of applications of gyroscope is widespread, such as in the navigation and control
system, due to its distinctive property. Here, a single-axis rate gyro is used for the measurement of
angular velocity in spinning space vehicles. For all applications, it is a critical problem to show the
stability of motion of the gyro, both theoretically and practically.
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Several interesting problems had been studied previously in the analysis of motion of the
gimbals of rate gyros in spinning vehicles [1–4]. For the case of which oZ is an uncertain constant,
conditions for global and local asymptotic stability of the gyro in spinning vehicles had been
obtained by using the Liapunov approach [1]. Under considerations of an angular velocity of
vehicle about its spin axis and an angular acceleration of the vehicle about its output axis the
motion of a single-axis rate gyro had been examined for small rotation y of the gimbals [2,3].
The stability of a rate gyro mounted on a vehicle, which has a time-varying angular velocity about
its spin axis, was studied by the Liapunov direct method [4]. All of the above references are
two-dimensional systems. An analysis of stability, double degeneracy and chaotic dynamics
is presented by a rate gyro with feedback control mounted on a space vehicle that spins with
an uncertain angular velocity oZðtÞ around its spin axis [5,6]. This system is a three-dimensional
non-linear one.
When it is referred to chaos in some parametric space, a non-linear system can also exhibit

complicated steady state behaviors [7]. After numerical analysis of meteorology, Lorenz discovered
the chaotic attractor, which is so-called ‘‘deterministic chaos’’. There will be a sensitive dependence
on initial conditions of time histories of chaotic motion, when some non-linearities exist in system
[7–11]. There are many routes to chaos in dissipative systems. Three prominent routes to chaos have
been explored. They are period doubling, intermittency, and quasiperiodic routes. And the three
routes can be related to period doubling, saddle node, and Hopf bifurcations respectively [7–9]. In
gyroscopic systems, the dynamics of gyros also exhibit chaotic behavior. In this paper, the
parametrically excited system is studied. It will exhibit non-linear phenomena including the
existence of periodic, quasiperiodic and chaotic motions of the system.
Singular perturbations, traditional efficient tools for determining physically meaningful

subsystems, are being developed into systematic approach to multi-time dynamic systems. These
methods applied in power systems and Markov chains were used to decompose the dynamic
systems into reduced (slow) and boundary-layer (fast) systems [12,13]. Cited from those methods,
the singular perturbation method is also used to derive the special form of the gyro system.
In this paper, the stability and chaotic dynamics of a single-axis rate gyro subjected to linear

feedback control mounted on a space vehicle undergoing uncertain angular velocity oZðtÞ about
its spin of the gyro and acceleration ’oX ðtÞ with respect to the output axis are studied. The
controller of the system is modelled by the first order dynamics with a time constant of O(1) so
that the feedback control system is a three-dimensional one. For the case of which oZ is an
uncertain constant, the stability conditions and bifurcation surfaces of the system were derived by
Routh–Hurwitz theory and local bifurcation analysis to reveal region of stability and bifurcation
sequences with the associated phase portraits in the parametric space, in the neighborhood of the
double degeneracy. For the non-linear non-autonomous system, the stability of the feedback
control system will be obtained by using the Liapunov direct method. When the time constant of
controller is much smaller than the mechanical one, the singularly perturbed system can be
obtained by singular perturbation theory. Studying the reduced and boundary-layer systems also
analyze the Liapunov stability of this system. Finally, the degeneracy conditions of the system are
presented in parametric planes by numerical simulations. The numerical results of the
perturbation of an uncertain angular velocity undergoing small harmonic excitation are carried
out to examine the various forms of dynamic behavior by using the time history, phase plane,
Poincar!e maps.
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2. Equations of motion

We considered the model of a single-rate gyro mounted on a space vehicle as shown in Fig. 1.
The gimbals can turn about output X -axis with rotational angle y: Damping torque Cd

’y resists
motion about this axis. Using Lagrange’s equation, the differential equation for the output
deflection angle y of a rate gyro with feedback control was derived as follows [14]:

ðA þ AgÞ.yþ Cd
’yþ CnRðoY cos yþ oZ sin yÞ þ ðA þ Bg � CgÞðoY cos y

þ oZ sin yÞðoY sin y� oZ cos yÞ þ ðA þ AgÞ ’oX ¼ Tc; ð1Þ

where CnR ¼ Cð ’c� oY sin yþ oZ cos yÞ ¼ const:
oX ; oY ; and oZ denote the angular velocity components of the platform along output axis X ;

input axis Y ; and normal axis Z respectively. A; A ð¼ BÞ; C and Ag;Bg;Cg denote the moments of
inertia of rotor and gimbals for the gimbals axes x; Z; z respectively. Tc is the control-motor torque
along the output axis of the system to balance the corresponding gyroscopic torque. The torque
and electric current of control-motor can be modelled by the following relationships:

Tc ¼ KT I ; ð2Þ

L ’I þ RI ¼ Kaðyd � yÞ � K0
’y; ð3Þ

where electromotive force is proportional to the difference between the prescribed motion ydðtÞ
and the rotational angle y; that is u ¼ Kaðyd � yÞ: It is applied to the control-motor. I ;R;L; and
K0 are the current, resistance, inductance, and back-electromotive constant of the control-motor;
KT denotes the torque constant of the control-motor.
Eqs. (1)–(3) thus represent a feedback control system when position feedback is applied to the

gyro motion. The prescribed motion of the gyro needs to be fixed at the origin, i.e. yd ¼ 0; where
the relationship of the output angle y is proportional to the constant input angular velocity oY : It
is very important to analyze the stability of the measuring origin of a rate gyro system mounted on
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Fig. 1. The feedback system: (a) the rate gyro; (b) the block diagram.
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a wobbling space vehicle, because the more precise analysis for the system, the more reliability for
the guidance.
We are interested in the non-linear behavior of dynamical motion when the vehicle undergoes

an uncertain angular velocity oZðtÞ about the spin axis (Z-axis), an acceleration ’oX ðtÞ about the
output axis (X -axis), and the angular velocity about OY is zero, i.e., oY ¼ 0: Now the feedback
control system is studied in the following form:

’x ¼ y;

’y ¼ � D1y þ D2z � D3oZðtÞ sin x þ 1=2D4o2
ZðtÞ sin 2x � ’oX ;

’z ¼ � D5z � D6x � D7y; ð4Þ

where x ¼ y; y ¼ ’y; z ¼ I ;D1 ¼ Cd=ðA þ AgÞ; D2 ¼ KT=ðA þ AgÞ; D3 ¼ CnR=ðA þ AgÞ; D4 ¼ ðA þ
Bg � CgÞ=ðA þ AgÞ; D5 ¼ R=L;D6 ¼ Ka=L; D7 ¼ K0=L:

3. The stability of gimbal motion

In this section, the stability of both autonomous system and non-autonomous system are
discussed by distinct methods. The stability of the autonomous system is analyzed to obtain the
necessary and sufficient conditions for locally asymptotical stable motion at the fixed point by
Routh–Hurwitz criterion. In addition, the Liapunov direct method [14] was used to obtain the
conditions sufficient for asymptotical stability and instability of motion of the feedback control
system.

3.1. The stability of the non-linear autonomous system

For the case when ’oX ¼ 0 and oZ ¼ oZC ¼ const:; this system is autonomous. One stationary
point of the non-linear autonomous system is the origin ðx; y; zÞ ¼ ð0; 0; 0Þ: Let the disturbed
motion be x ¼ 0þ x1; y ¼ 0þ x2; z ¼ 0þ x3; so the equations for disturbances are as

’x1 ¼ x2;

’x2 ¼ � D1x2 þ D2x3 þ Qx1 þ Hx3
1 þ Oðx1Þ

5;

’x3 ¼ � D5x3 � D6x1 � D7x2; ð5Þ

where Q ¼ �D3oZC þ D4o2
ZC ; H ¼ D3oZC=6� 2D4o2

ZC=3:
First, the conditions for the stability of the origin of the autonomous system will be obtained by

using the Routh–Hurwitz criterion.
The Jacobian matrix J at the origin of system (5) is in the form of

J ¼

0 1 0

Q �D1 D2

�D6 �D7 �D5

2
64

3
75: ð6Þ
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According to the Routh–Hurwitz criterion, the necessary and sufficient conditions for stability are
as follows:

oZC1ooZCooZC2; ð7Þ

where

oZC1 ¼ ðD3 � ðD2
3 þ 4D4pminÞ

1=2Þ=ð2D4Þ; oZC2 ¼ ðD3 þ ðD2
3 þ 4D4pminÞ

1=2Þ=ð2D4Þ;

pmin ¼ Minðe3; e6Þ; e3 ¼ ðD5D2D7 þ D1D
2
5 þ D1D2D7 þ D2

1D5 � D6D2Þ=D1; e6 ¼ D6D2=D5:

All the roots of the characteristic polynomial of the Jacobian matrix J have negative real parts,
i.e., the motion of the linearized autonomous system is asymptotically stable at the fixed point.
Alternatively, the system possesses critical behavior when Jacobian matrix J contains eigenvalues
with zero real parts in the following bifurcation surfaces:

1. There exists one zero eigenvalue (l1 ¼ 0) of this linearized system for the system parameter
Q ¼ D6D2=D5; i.e., oZC ¼ oZC1 or oZC2; on stability boundary, pmin ¼ e6: The residual
eigenvalues are l2;3 ¼ f�ðD1 þ D5Þ7½ðD1 þ D5Þ

2 � 4ðD2D7 � Q þ D1D5Þ�1=2g=2:
2. There exists a pair of pure imaginary eigenvalues ðl1;2 ¼ 7jo0Þ of this linearized system for the

system parameter Q ¼ ðD5D2D7 þ D1D
2
5 þ D1D2D7 þ D2

1D5 � D6D2Þ=D1; i.e., oZC ¼ oZC1 or
oZC ¼ oZC2; pmin ¼ e3; where o0 ¼ ð�D1ðD5D2D7 þ D1D

2
5 � D6D2ÞÞ

1=2=D1 is a real number,
i.e., D2 > D1D

2
5=ðD6 � D5D7Þ: The residual eigenvalue is �ðD1 þ D5Þ;

3. There exists a double zero eigenvalues ðl1;2 ¼ 0; 0Þ for (a) the system parameter Q ¼
D1D5D6=ðD6 � D5D7Þ and D2 ¼ D1D

2
5=ðD6 � D5D7Þ; the residual eigenvalue is �ðD1 þ D5Þ; (b)

the system parameter Q ¼ D6D2=D5 and D1 ¼ D2ðD6 � D5D7Þ=D2
5; the residual eigenvalue is

still in the form of �ðD1 þ D5Þ but the value adapts for varying the system parameter D1:

Here, the qualitative behaviors of this system in the neighborhood of a fixed point are examined
by local bifurcation analysis. A codimension 2 bifurcation problem of the feedback system is
studied. There exists a double zero eigenvalues with the third eigenvalue being �ðD1 þ D5Þ on the
surface

Q ¼ QC ¼ D1D5D6=ðD6 � D5D7Þ; D2 ¼ D2C ¼ D1D
2
5=ðD6 � D5D7Þ: ð8Þ

To transform the linear part of this system into the Jordan canonical form L; we use the similarity
transformation matrix T of generalized eigenvectors of the Jacobian matrix J:

T ¼

1 a12 a13

0 1 a23

a31 0 1

2
64

3
75; ð9Þ

where a12; a13; a23; a23 and its determinant D are shown in Appendix A.
We introduce the parameters Q ¼ QC þ e1; D2 ¼ D2C þ e2; so that the unfolding of the critical

system (e1 ¼ e2 ¼ 0Þ will be included in our parameterized normal form. By choosing the
co-ordinate transformation y ¼ Tx; the system equation (5) becomes the standard form

’y ¼ Ky þ Key þ Fy; ð10Þ

where the non-linear function Fy is evaluated at critical values; K; Ke and Fy are shown in
Appendix A. By center manifold theory [15] the study of the dynamics can be reduced to the
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associated lower-dimensional center manifold to determine the key qualitative dynamical
behavior. The center manifold will be computed from the standard form (10) at the critical values
ðe1 ¼ e2 ¼ 0Þ: Now we will begin by considering the center manifold for this system. Eq. (5)
contains cubic symmetry which implies that the center manifold will be given by an odd function
y3 ¼ hðy1; y2), i.e., y3 ¼ Oðjy3i j). Thus the corresponding reduced system is

’y1

’y2

" #
¼

0 1

0 0

" #
y1

y2

" #
þ

e11 e12

e21 e22

" #
y1

y2

" #
þ

fyc1

fyc2

" #
þ h:o:t:; ð11Þ

then we employ a linear change of co-ordinates

y1

y2

" #
¼

1þ e12 0

�e11 1

" #
u1

u2

" #
ð12Þ

to yield the system in a more convenient form

’u1 ¼ u2 þ fu1 þ h:o:t:; ’u2 ¼ m1u1 þ m2u2 þ fu2 þ h:o:t:; ð13Þ

where h.o.t. are of orders Oðjy5
i jÞ; Oðjeiy3i jÞ and Oðje2i yijÞ; and the relevant symbols are defined in

Appendix A.
At this stage, the method of normal forms is employed to simplify the reduced system in which

the qualitative dynamics are still reserved in the neighborhood of the origin. The basic idea
of normal forms is to use a near-identity co-ordinate transformation in which all non-essential
non-linear terms are eliminated. Thus, the truncated normal form is given by

’z1 ¼ z2; ’z2 ¼ m1z1 þ m2z2 þ az31 þ bz21z2; ð14Þ

where a ¼ Hð1� a13a31Þ=D; b ¼ �3Ha12a13a31=D:
We directly deduce the dynamical behavior of the full system (10) on the center manifold near

the critical degenerate system. The rescaling technique can be used to reduce the number of cases.
Letting z1-r1z1; z2-r2z2; and t-r3t; we obtained the following form:

’z1 ¼ z2; ’z2 ¼ m01z1 þ m02z2 þ cz31 � z21z2; ð15Þ

where m01 ¼ m1r
2
3; m02 ¼ m2r3; r1 ¼ ða=cÞ1=2=b; r2 ¼ �ða=cÞ3=2=b2; r3 ¼ �ðbc=aÞ; and c ¼ þ1 for

a > 0; c ¼ �1 for ao0: There are two distinct cases ðc ¼ 71Þ to be considered. By local
bifurcation analysis, system (15) has been studied quit extensively (see Appendix B). We can
consequently employ the unfolding results of Refs. [10,11] directly to give the dynamical behavior
of the full system (5) on the center manifold near the critical degenerate.

3.2. The stability of the non-autonomous system

For the case when ’oX ðtÞ and oZðtÞ are time-varying function, the system is the non-
autonomous system and the motion of system (4) can be solved analytically, approximately or
numerically as x ¼ y0ðtÞ; y ¼ ’y0ðtÞ; z ¼ I0ðtÞ; which satisfies the following equation:

.y0 þ D1
’y0 þ D3oZ sin y0 � 1=2D4o2

Z sin 2y0 þ ’oX ¼ D2I0; ð16aÞ

’I0 þ D5I0 ¼ �D6y0 � D7
’y0: ð16bÞ
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Let the disturbed motion be x ¼ y0ðtÞ þ x1; y ¼ ’y0ðtÞ þ x2; z ¼ I0ðtÞ þ x3; where x1; x2;x3 are
deviations from their respective nominal conditions. The differential equation (4) for the
disturbances is

’x1 ¼ x2;

’x2 ¼ �D1x2 þ D2x3 � D3toZðtÞx1 þ D4to2
ZðtÞx1 þ Oðx2

1Þ;

’x3 ¼ �D5x3 � D6x1 � D7x2; ð17Þ

where D3t ¼ D3 cosðy0ðtÞÞ; D4t ¼ D4 cosð2y0ðtÞÞ; and Oðx2
1Þ represents higher order terms.

The stability of the motion of the above system (17) is investigated by the Liapunov direct
method. Now we take the Liapunov function of quadratic forms:

Vðl1; l2Þ ¼ l1x2
1=2þ l2x1x2 þ x2

2=2þ l2D2x
2
3=ð2D6Þ; ð18Þ

where l1 and l2 are undetermined positive constants. There exists a number of Liapunov function
candidates varied with the proper value of l1; l2; in which each of Liapunov candidates can give
the conditions sufficient for stability. By choosing a number of l1; l2 properly, we can obtain the
conditions sufficient for asymptotical stability of motion of the feedback control system. We have
the negative time derivative of V through Eq. (17) as

� ’Vðl1; l2Þ ¼ l2½D3toZðtÞ � D4to2
ZðtÞ�x

2
1 þ ½l2D1 þ D3toZðtÞ � l1 � D4to2

ZðtÞ�x1x2

þ ðD1 � l2Þx2
2 þ ðl2D8 � D2Þx2x3 þ l2D9x

2
3 þ W�

1 ; ð19Þ

where D8 ¼ D2D7=D6; D9 ¼ D2D5=D6; and W�
1 represents higher order terms.

Since � ’V contains time explicitly, we must find a function W that does not contain time
explicitly such that � ’VXW : We take W as

W ¼ l2ðD2 þ l3Þx2
1 þ ðl2D1 þ D2 � l1 þ l3Þx1x2 þ l2x2

2

þ ðl2D8 � D2Þx2x3 þ l4x2
3; ð20Þ

where l3 and l4 are undetermined positive constants. By Sylvester’s theorem [14], W is positive
definite if

l2 > 0; ð21aÞ

l3 > �D2 ¼ �KT=ðA þ AgÞ; ð21bÞ

ðD1l2 þ D2 þ l3Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðD2 þ l3Þ½4l2l4 � ðD8l2 � D2Þ

2�=l4
q

ol1oðD1l2 þ D2 þ l3Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðD2 þ l3Þ½4l2l4 � ðD8l2 � D2Þ

2�=l4
q

; ð21cÞ

l4 > ðD2 � l2D8Þ
2=ð4l2Þ > 0 ð21dÞ

are satisfied. Furthermore,

� ’V � W ¼ l2½�D2 þ ðD3toZ � l3Þ � D4to2
Z�x

2
1 þ ½�D2 þ ðD3toZ � l3Þ

� D4to2
Z�x1x2 þ ðD1 � 2l2Þx2

2 þ ðD9l2 � l4Þx2
3 þ W�; ð22Þ

where W� represents the terms of higher degree. If the following inequalities are held, then
� ’V � WX0 ð¼ 0 only when x1 ¼ 0; x2 ¼ 0; x3 ¼ 0), i.e., � ’V � W is positive definite. So � ’V is
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positive definite:

D4t > 0; i:e:;�p=4oy0op=4;

D3t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t � 4D4tðD2 þ l3Þ
q� �

=ð2D4tÞooZo D3t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t � 4D4tðD2 þ l3Þ
q� �

=ð2D4tÞ; ð23aÞ

l3oD2
3t=ð4D4tÞ � D2; ð23bÞ

D1 > 2l2 > 0; ð23cÞ

4l2ðD1 � 2l2Þ � ½�D2 þ ðD3toZ � l3Þ � D4to2
Z� > 0; ð23dÞ

i.e., if l3oD2
3t=4D4t � D2 � 4l2ðD1 � 2l2Þ; then

oZo D3t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t � 4D4t½ðD2 þ l3Þ þ 4l2ðD1 � 2l2Þ�
q� �

=ð2D4tÞ

or

oZ > D3t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t � 4D4t½ðD2 þ l3Þ þ 4l2ðD1 � 2l2Þ�
q� �

=ð2D4tÞ: ð23eÞ

If l3 > D2
3t=ð4D4tÞ � D2 � 4l2ðD1 � 2l2Þ; then

oZAR; R: real number; ð23fÞ

l4oD9l2: ð23gÞ

By Sylvester’s theorem, the sufficient condition for the positive definiteness of V is

l1 > l22 > 0: ð24Þ

From Eqs. (21c), (21d) and (24), we have

lLol1olH ;

where

lL ¼ l22;D1l2 þ D2 þ l3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðD2 þ l3Þ½4l2l4 � ðD8l2 � D2Þ

2�=l4
q� �

max

; ð25aÞ

lH ¼ D1l2 þ D2 þ l3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðD2 þ l3Þ½4l2l4 � ðD8l2 � D2Þ

2�=l4
q

: ð25bÞ

From Eqs. (21b) and (23c), we have

lH > 2l22 þ D2 þ l3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2ðD2 þ l3Þ½4l2l4 � ðD8l2 � D2Þ

2�=l4
q

> l22: ð26Þ

So the parameter l1 can be chosen from the domain constrained by the above inequalities.
Similarly by the former inequalities (21b), (23b), (23e) and (23f), we know that l3 can be chosen if

�D2ol3oD2
3t=4D4t � D2 ð27Þ
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is held. From Eqs. (21d) and (23g), the parameter l4 also can be chosen as

ðD2 � D8l2Þ
2=ð4l2Þol4oD9l2; ð28Þ

i.e., the following inequalities are held:

l2 > D2=D8 for D8p2
ffiffiffiffiffiffi
D9

p
; ð29aÞ

D2=ð2
ffiffiffiffiffiffi
D9

p
þ D8Þol2oD2=ðD8 � 2

ffiffiffiffiffiffi
D9

p
Þ for D8 > 2

ffiffiffiffiffiffi
D9

p
: ð29bÞ

From Eqs. (23a), (23c), (23e), and (23f) by properly selecting a suitable l2 of Eq. (29), and a
number of l3 of Eq. (27), we can get the following conditions that assure both V ðl1; l2Þ and
� ’Vðl1; l2Þ are positive definite:

oZ1 ¼ 0ooZooZ2 ¼ D3t=D4t

¼ðD3=D4Þðcosðy0Þ=cosð2y0ÞÞðXD3=D4Þ for� p=4oy0op=4; ð30aÞ

and

D1 > 2D2=D8 for D8p2
ffiffiffiffiffiffi
D9

p
;

D1 > 2D2=ð2
ffiffiffiffiffiffi
D9

p
þ D8Þ for D8 > 2

ffiffiffiffiffiffi
D9

p
: ð30bÞ

According to the Liapunov asymptotical theorem, Eq. (30) is the condition sufficient for
stability of the system, and the motion ðy; ’y; IÞ ¼ ðy0; ’y0; I0Þ is asymptotically stable.
The conditions sufficient for instability of motion of the feedback control system are considered

by using the Liapunov instability theorem. We construct the Liapunov function as

V ðm1;m2Þ ¼ �m1x
2
1=2� m2x1x2 þ x2

2=2þ m2D2x
2
3=ð2D6Þ; ð31Þ

where m1 and m2 are undetermined positive constants. Then we have

� ’Vðm1;m2Þ ¼ � m2½D3toZðtÞ � D4to2
ZðtÞ�x

2
1

þ ½�m2D1 þ D3toZðtÞ þ m1 � D4to2
ZðtÞ�x1x2 þ 2m2D2x1x3

þ ðD1 þ m2Þx2
2 þ ðm2D8 � D2Þx2x3 þ m2D9x

2
3 þ W�

2 ; ð32Þ

where W�
2 represents the terms of higher degree.

Since � ’V contains time explicitly, we must find a function W that does not contain time
explicitly such that � ’VXW : We take W as

W ¼ � m2e
�x2

1 þ ðe� � m2D1 þ m1Þx1x2 þ m2x
2
2 þ 2m2D2x1x3

þ ðm2D8 � D2Þx2x3 þ m3x
2
3; ð33Þ

where 0 > e� > �N: By Sylvester’s theorem, we know that W is positive definite if

mLom1omH ; where mL ¼ D1m2 � e� � 2m2

ffiffiffiffiffiffiffiffiffi
�e�

p
;

mH ¼ D1m2 � e� þ 2m2

ffiffiffiffiffiffiffiffiffi
�e�

p
;

mav � mDom1omav þ mD; where ð34aÞ
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mav ¼ D1m2 � e� þ D2m2ðD8m2 � D2Þ=m3;

mD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2ðD2

2m2 þ e�m3Þ½ðD8m2 � D2Þ
2 � 4m2m3�=m2

3

q
; ð34bÞ

m2 > 0; ð34cÞ

0om3oðD8m2 � D2Þ
2=ð4m2Þ for 0 > e� > �m2D

2
2=m3; ð34dÞ

m3 > ðD8m2 � D2Þ
2=ð4m2Þ for e�o� m2D

2
2=m3 ð34eÞ

are satisfied. Furthermore,

� ’V � W ¼m2ðe� � D3toZ þ D4to2
ZÞx

2
1 þ ð�e� � D3toZ � D4to2

ZÞx1x2

þ D1x
2
2 þ ðm2D9 � m3Þx2

3: ð35Þ

If the following inequalities hold, then � ’V � WX0; i.e., � ’V is positive definite:

D4t > 0; i:e:;�p=4oy0op=4;

oZoðD3t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t � 4D4te�
q

Þ=ð2D4tÞ or

oZ > ðD3t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t � 4D4te�
q

Þ=ð2D4tÞ; ð36aÞ

D1 > 0; ð36bÞ

ðD3t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t � 4D4te� þ 16D1D4tm2

q
Þ=ð2D4tÞooZ

oðD3t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t � 4D4te� þ 16D1D4tm2

q
Þ=ð2D4tÞ; ð36cÞ

m3om2D9: ð36dÞ

From Eqs. (34a), and (34b), if mLomavomH are satisfied, i.e., ð0; ðD2
2 � 2

ffiffiffiffiffiffiffiffiffi
�e�

p
Þ=ðD2D8ÞÞmaxo

m2oðD2
2 þ 2

ffiffiffiffiffiffiffiffiffi
�e�

p
Þ=ðD2D8Þ; the parameter m1 can be chosen. Similarly by the former inequalities

(34d), (34e) and (36d), we know that m3 can be selected. Also from equations (36a)–(36c), by
properly selecting a number of e�; we can get the conditions that assure � ’Vðm1;m2Þ be positive
definite:

oZo0 or oZ > D3t=D4t; ð37aÞ

D1 > 0: ð37bÞ

According to the Liapunov instability theorem, Eqs. (37a) and (37b) are the condition sufficient
for the unstable system. From the previous result, we can obtain conditions for sufficient of
stability and instability of the motion ðy; ’y; IÞ ¼ ðy0; ’y0; I0Þ:
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4. Singular perturbation model

To facilitate the analysis, in the interest of model simplification, we usually neglect those small
physical parameters to reduce orders of a model. Singular perturbations are used to simplify the
model and to provide tools for improving oversimplified models when the original full order
model satisfies the some assumptions [12]. To obtain the standard singular perturbation model, let
us define the variables p1 ¼ x; p2 ¼ Tmy; q ¼ ðT2

mD2Þz; t-t=Tm; Tm ¼ D5=ðD1D5 þ D2D7Þ; Te ¼
1=D5; e ¼ Te=Tm; and rewrite the state equation (4) as

’p1 ¼ p2;

’p2 ¼ �a0p2 þ q � a3oZðtÞ sin p1 þ 1=2a4o2
ZðtÞ sin 2p1 � ’oX ðtÞ;

e ’q ¼ �q � a1p1 � a2p2; ð38Þ

or in the compact form ’p ¼ f0ðt; p; q; eÞ; e ’q ¼ g0ðt; p; q; eÞ; where p ¼ ½p1; p2�; f0 ¼ ½ f01; f02�; a0 ¼
D1Tm; a1 ¼ D2D6T

2
m=D5; a2 ¼ D2D7Tm=D5; a3 ¼ D3T

2
m; a4 ¼ D4T

2
m:

We assume that e{1: This assumption means that the mechanical time constant Tm is
sufficiently larger than the electrical time constant Te: By using the singular perturbation theory
[13] to consider the singularly perturbed system (38), at e ¼ 0; the slow manifold is

q ¼ hðt; pÞ ¼ �a1p1 � a2p2:

The corresponding slow model, ’p ¼ f0ðt; p; hðt; pÞ; 0Þ;

’p1 ¼ p2; ’p2 ¼ �Mðp1;oZÞ � Nðp2Þ � ’oX ; ð39Þ

where Mðp1;oZÞ ¼ a1p1 þ a3oZðtÞ sin p1 � a4o2
ZðtÞ cos p1sin p1; Nðp2Þ ¼ ða0 þ a2Þp2:

For the case when ’oX ¼ 0 and oZ ¼ oZC ¼ const:; the system has one isolated equilibrium
point at the origin. Depending upon the functions Mð�Þ and Nð�Þ it might have other equilibrium
points. A Lyapunov function candidate may be taken as the energy-like function

V ðpÞ ¼
Z p1

0

Mðy;oZCÞ dy þ 1=2p2
2: ð40Þ

The derivative of V ðpÞ along the trajectories of the system is given by

’VðpÞ ¼ �p2Nðp2Þp0: ð41Þ

Thus, ’VðpÞ is negative semidefinite. According to the theorems of Barbashin and Krasovskii [13],
the only solution of the system that can stay in S ¼ fpAR2 j p2 ¼ 0g for all t is the trivial solution
pðtÞ ¼ 0 if Mð0;oZCÞ ¼ 0; p1Mðp1;oZCÞ > 0 for p1a0 is satisfied , i.e.,

p1ða1p1 þ a3oZC sin p1 � a4o2
ZC cos p1 sin p1Þ

> p1ða1 sin p1 þ a3oZC sin p1 � a4o2
ZC sin p1Þ > 0 ð42Þ

when the condition

ða3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
3 þ 4a1a4

q
Þ=ð2a4ÞooZCoða3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a23 þ 4a1a4

q
Þ=ð2a4Þ ð43Þ

is held. Thus, the origin is asymptotically stable.
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For the case when ’oX ðtÞ and oZðtÞ are time-varying function, the system has an exponentially
stable motion ðp1; ’p1Þ ¼ ðp10ðtÞ; ’p10ðtÞÞ when the following condition is held:

oZ1ooZðtÞooZ2; ð44Þ

where

oZ1 ¼ ða3t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
3t þ 4a1a4t

q
Þ=ð2a4tÞ ¼ ðD3t �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t þ 4D2D4tðD6=D5Þ
q

Þ=ð2D4tÞ;

oZ2 ¼ ða3t þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
3t þ 4a1a4t

q
Þ=ð2a4tÞ ¼ ðD3t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

3t þ 4D2D4tðD6=D5Þ
q

Þ=ð2D4tÞ

and D4t > 0; i.e., �p=4oy0op=4; a3t ¼ a3 cosðp10Þ; a4t ¼ a4 cosð2p10Þ which can be derived by the
same form of Liapunov functions as Ref. [4]. The origin of the corresponding boundary-layer system

dg
dt

¼ g0ðt; p; gþ hðt; pÞ; 0Þ ¼ �g ð45Þ

is exponentially stable uniformly in ðt; pÞ: Since f0 and g0 of Eq. (38) also satisfy the conditions of
Appendix C, we conclude that the origin of the full singularly perturbed system (38) is exponentially
stable for sufficiently small e: Thus, the necessary and sufficient condition for asymptotic stability is
Eq. (44).
From Sections 3 and 4 analyses, condition (30) sufficient for asymptotical stability of Section 3

are covered by Eq. (44) of Section 4, i.e.,

oZ1o
0ooZðtÞoD3t=D4t Eq:ð30Þ

oZðtÞ Eq:ð44Þ

( )
ooZ2:

The result of Section 4 has larger stability region than that of Section 3. In Section 3, a three-
dimensional dynamic system is considered. In Section 4, we consider the case in which the
mechanical time constant is sufficiently larger than the electrical time constant. Thus the system
can be reduced to a two-dimensional system by singular perturbations which simply the order of
the model and provide tools for improving oversimplified models.

5. Numerical demonstrations

In this section, examples are carried out to examine the various forms of dynamic behavior of
system (4) for the previous analyses by numerical simulation techniques. The parameters of the
cases are shown in Appendix D.
In Section 3.1, the stability condition (7) for the non-linear autonomous system is derived and

the numerical simulations of the autonomous system (5) near the double-zero degenerate point are
analyzed. The double-zero eigenvalues with the third eigenvalue l3 ¼ �165 of the system and the
stability boundary of the uncertain constant angular velocity oZC are obtained corresponding to
the double-zero degenerate point (D2C ;QCÞ ¼ ð388:889; 3888:89Þ: There exists at least one zero
eigenvalue of the system at Q ¼ e6; the maximum eigenvalue that is equal to zero is presented by
the solid line and the stability boundary of the uncertain constant angular velocity oZC

corresponding to Q ¼ e6 are obtained as shown in Fig. 2. A pair of pure imaginary eigenvalues
exist corresponding to the solid line of Q ¼ e3 and the stability boundary of the uncertain constant
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Fig. 2. Stability analysis of the autonomous system (5) near the double-zero degenerate point (D2C ;QCÞ ¼
ð388:889; 3888:89Þ: (a) one zero eigenvalue at Q ¼ e6; (b) two maximum eigenvalues of the system corresponding

Q ¼ e6; (c) the stability boundary of the uncertain constant angular velocity oZC corresponding Q ¼ e6:
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Fig. 3. Stability analysis of the autonomous system (5) near the double-zero degenerate point (D2C ; QCÞ ¼
ð388:889; 3888:89Þ: (a) one eigenvalue with zero real part at Q ¼ e3; (b) a pair of pure imaginary eigenvalues

corresponding Q ¼ e3; (c) the stability boundary of the uncertain constant angular velocity oZC corresponding Q ¼ e3:
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Fig. 4. Stability region of the autonomous system (5) near the double-zero degenerate point (D2C ;QCÞ ¼
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Fig. 5. The time histories of the autonomous system (5) near the double-zero degenerate point ðD2;QÞ ¼
ð388:889; 3888:89Þ: (a) ‘a’ point ðD2;QÞ ¼ ð388; 3884Þ; (b) ‘b’ point ðD2;QÞ ¼ ð388; 3878Þ; (c) ‘c’ point ðD2;QÞ ¼
ð390; 3886Þ; (d) ‘d’ point ðD2;QÞ ¼ ð390; 3892Þ:
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angular velocity oZC corresponding to Q ¼ e3 are obtained in Fig. 3. Stability regions of the
autonomous system (5) near the double-zero degenerate point are obtained as shown in Fig. 4
when both the inequality conditions Qoe6 and Qoe3 are satisfied. The time-historical trajectories
of the perturbed motion that converge to the origin from the initial state ðx1;x2; x3Þ ¼ ð0:1; 0; 0Þ
are plotted in Figs. 5(b) and (c) for ‘b’ and ‘c’ points are within stability region in Fig. 4. These
systems are locally asymptotical stable. On the other hand, Figs. 5(a) and (d) show that the
trajectories move far away from the origin to another fixed point and limit cycle, respectively, for
‘a’ and ‘d’ points are beyond stability region in Fig. 4. This means that the systems are unstable.
Similarly, the phase trajectories corresponding Fig. 5 are presented as shown in Fig. 6. Also, the
dynamics of the autonomous system (5) on the center manifold near the double-zero degenerate
point are examined. In Fig. 7, we illustrate a bifurcation set in (D2;Q) space for Eq. (15), c ¼ �1;
with the associated phase portraits which are topologically equivalent to the flow on the center
manifold.
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Fig. 6. The phase trajectories of the autonomous system (5) near the double-zero degenerate point ðD2;QÞ ¼
ð388:889; 3888:89Þ: (a) ‘a’ point ðD2;QÞ ¼ ð388; 3884Þ; (b) ‘b’ point ðD2;QÞ ¼ ð388; 3878Þ; (c) ‘c’ point ðD2;QÞ ¼
ð390; 3886Þ; (d) ‘d’ point ðD2;QÞ ¼ ð390; 3892Þ in Fig. 5.
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From stability analyses of the non-autonomous system, in Sections 3.2 and 4, the sufficient
condition (30) for stability are covered by condition (44) and the latter must satisfy the condition
when the mechanical time constant is sufficiently larger than the electrical time constant. Then
those are very close. When the parameters of the gyro satisfy the stability condition, i.e.,
oZ1ooZooZ2; the motion is asymptotically stable.
For the case ’oX ðtÞ is time-varying function but small, the solution of the dynamic system

can be assumed zero. In the parameters D1 ¼ 1; D2 ¼ 10; we have the limits oZ1 ¼ 0; oZ2 ¼ 2000
for the stability condition (30), and the limits oZ1 ¼ �0:05; oZ2 ¼ 2000:05 for the stability
condition (44). When oZðtÞ varies between oZ1 and oZ2 the gimbals motion is asymptotically
stable. The case oZðtÞ ¼ oZC þ n sinot oscillating near the stability boundary oZ2 is studied by
numerical simulation of system (4) as shown in Figs. 8 and 9. In Figs. 8(a) and (b), the trajectories
of the perturbed motion asymptotically converges to the origin from the initial state
(x1; x2; x3Þ ¼ ð0:1; 0; 0Þ when oZðtÞ oscillates between oZ1 and oZ2: The quasiperiodic trajectory
is restricted to an annular-like region of the state space and the corresponding Poincar!e map
points fill in an elliptically shaped closed curve for oZC ¼ 2000; n ¼ 0:415 at the fixed driving
frequency o ¼ 30 in Fig. 8(c) and (d), respectively. A limit cycle of period-T plotted in phase plane
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Fig. 7. Bifurcation diagram near the degenerate point ðD2C ;QCÞ: (a) bifurcation set in ðD2;QÞ space; (b) the associated
phase portraits; H: Hopf bifurcation, SC: saddle connection bifurcation, P: saddle-node bifurcation of cycles, m01 ¼ 0:

pitchfork bifurcation.
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Fig. 8. The numerical simulation of the non-autonomous system (4): (a) the time history; (b) the phase trajectory for

oZðtÞ ¼ 1999þ 0:415 sinð30tÞ; (c) the phase trajectory; (d) Poincar!e map for oZðtÞ ¼ 2000þ 0:415 sinð30tÞ:

Fig. 9. The numerical simulation of the non-autonomous system (4): (a) the phase trajectory for oZðtÞ ¼ 2000þ
1:25 sinð30tÞ; (b) the time history; (c) the phase trajectory; (d) Poincar!e map for oZðtÞ ¼ 2000þ 1:31 sinð30tÞ:
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for n ¼ 1:25 as shown in Fig. 9(a). From Figs. 9(b) and (d), the time history, phase portraits and
Poincar!e maps exhibit the chaotic motion of the system for n ¼ 1:31:

6. Conclusions

An analysis is presented of a single-axis rate gyro subjected to linear feedback control when the
vehicle is simultaneously spinning with uncertain angular velocity oZðtÞ about its spin axis and
accelerating ’oX ðtÞ with respect to the output axis of the gyro. For the autonomous case in which oZ

is steady, both stability and degeneracy conditions of the fixed point were derived by the Routh–
Hurwitz criterion in Section 3.1. The autonomous system reveals the existence of saddle connection,
pitchfork, and Hopf bifurcations near the double degeneracy by local bifurcation analyses. A
bifurcation set and the associated sequence of phase portraits on the center manifold are presented.
For the non-autonomous case where oZðtÞ and ’oX ðtÞ are time-varying, there are explicit functions
of time, which were considered as coefficients, are contained by the differential equation of motion.
It is more difficult to find the Liapunov function candidate than that of the autonomous system by
using the Liapunov direct method. The conditions sufficient for asymptotic stability and instability
of motion were obtained in Section 3.2. In Section 4, the electric time constant is much smaller than
the mechanical time constant assumed. Then modelling this physical system in the singularly
perturbed form can be found. The stability of a full singular perturbed system from the reduced and
boundary-layer systems was studied in both autonomous and non-autonomous systems by the
Liapunov direct method for sufficiently small e: In this paper, the model considered here provides
not only conditions sufficient for asymptotic stability for design but also the existence of periodic,
quasiperiodic and chaotic motions of the system. Finally, the occurrence and nature of chaotic
attractors were studied by evaluating the time history, phase plane and Poincar!e maps.
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Appendix A

(a) a12 ¼ �ð�D6 þ D5D7Þ=ðD5D6Þ; a13 ¼ D1=D6 � D1ðD1 þ D5ÞD7=ðD6ð�D6 þ ðD1 þ D5ÞD7ÞÞ;
a23 ¼ D1ðD1 þ D5Þ=ð�D6 þ ðD1 þ D5ÞD7Þ; a31 ¼�D6=D5; D ¼ detðTÞ ¼ 1� a13a31 þ a12a23a31:

(b)

L ¼

0 1 0

0 0 0

0 0 �D1 � D5

2
64

3
75; Le ¼

e11 e12 e13

e21 e22 e23

e31 e32 e33

2
64

3
75; Fy ¼ T�1F ðTyÞ ¼

fy1

fy2

fy3

2
64

3
75;

e11 ¼ �a12ða31e1 þ e2Þ=D; e12 ¼ �a2
12e2=D; e13 ¼ �a12ðe1 þ a13e2Þ=D;

e21 ¼ ð1� a13a31Þða31e1 þ e2Þ=D; e22 ¼ a12ð1� a13a31Þe2=D; e23 ¼ ð1� a13a31Þðe1 þ a13e2Þ=D;
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e31 ¼ a12a31ða31e1 þ e2Þ=D; e32 ¼ a2
12a31e2=D; e33 ¼ a12a31ðe1 þ a13e2Þ=D; fy1 ¼ �a12 fy0;

fy2 ¼ ð1� a13a31Þfy0; fy3 ¼ a12a31 fy0; fy0 ¼ Hðy1 þ a12y2 þ a13y3Þ
3=D:

(c) fyc1 ¼ �a12 fyc0; fyc2 ¼ ð1� a13a31Þfyc0; fyc0 ¼ Hðy1 þ a12y2Þ
3=D:

(d) m1 ¼ e21 ¼ ½ð1� a13a31Þa31=D�e1 þ ½ð1� a13a31Þ=D�e2; m2 ¼ e11 þ e22 ¼ �ða12a31=DÞe1�
ða12a13a31=DÞe2; fu1 ¼ �a12 fu0; fu2 ¼ ð1� a13a31Þfu0; fu0 ¼ Hðu1 þ a12u2Þ

3=D:

Appendix B

Here, only an outline of the basic information needed for our special purpose is given by
Wiggins [16]. First, the system equilibrium points are determined as follows:

c ¼ þ1:ð0; 0Þ; ð7
ffiffiffiffiffiffiffiffiffi
�m01

q
; 0Þ; c ¼ �1:ð0; 0Þ; ð7

ffiffiffiffiffi
m01

q
; 0Þ:

By checking the linearized stability for these fixed points, the following bifurcation sets occur:
c ¼ þ1 : pitchfork on m01 ¼ 0; supercritical Poincar!e–Andronov–Hopf on m01o0; m02 ¼ 0;
c ¼ �1 : pitchfork on m01 ¼ 0; subcritical Poincar!e–Andronov–Hopf on m01 ¼ m02; m01 > 0:
By using Bendixson’s criterion and index theory, Eq. (15) has no periodic orbits for

c ¼ þ1: m01 > 0; m01o0; m02o0; m02 > �m01=5; m01o0; c ¼ �1: m02o0:

The results above are shown in Fig. 7 for c ¼ �1:
In addition the pitchfork and Hopf bifurcations for local analyses, a saddle-connection or

homoclinic bifurcation for global analyses is considered below to complete the bifurcation diagram.
For c ¼ þ1; using the rescaling z1 ¼ eu; z2 ¼ e2v1; m01 ¼ �e2; m02 ¼ e2v2 and t-et; the rescaled

form of system (15) is given by ’u ¼ v1; ’v1 ¼ �u þ u3 þ eðv2v1 � u2v1Þ: For e ¼ 0; the Hamiltonian
function of this system is Hðu; v1Þ ¼ v21=2þ u2=2� u4=4: The autonomous system has a
heteroclinic connection on m02 ¼ �m01=5þ Oðm

02
1 Þ:

For c ¼ �1; using the rescaling z1 ¼ eu; z2 ¼ e2v1; m01 ¼ e2; m02 ¼ e2v2 and t-et; the rescaled
form of system (15) is given by ’u ¼ v1; ’v1 ¼ u � u3 þ eðv2v1 � u2v1Þ: For e ¼ 0; the Hamiltonian
function of this system is Hðu; v1Þ ¼ v21=2� u2=2þ u4=4: The autonomous system has a
homoclinic bifurcation on m02 ¼ 4m01=5þ Oðm

02
1 Þ and a saddle-node bifurcation of cycles on m02 ¼

dm01 þ?; dE0:752; on which the periodic orbits coalesce.

Appendix C

The stability analysis that describes a procedure for constructing Liapunov functions for full
singularly perturbed system as follows [13]:
Consider the singularly perturbed non-autonomous system

’x ¼ f ðt;x; z; eÞ; e’z ¼ gðt; x; z; eÞ: ðC:1Þ

Assume that the following assumptions are satisfied for all ðt; x; eÞA½0;NÞ 
 Br 
 ½0; e0�:

1. f ðt; 0; 0; eÞ ¼ 0 and gðt; 0; 0; eÞ ¼ 0:
2. The equation 0 ¼ gðt; x; z; 0Þ has an isolated root z ¼ hðt;xÞ such that hðt; xÞ ¼ 0:
3. The functions f ; g and h and their partial derivatives up to order 2 are bounded for

z � hðt; xÞABr:
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4. The origin of the reduced system ’x ¼ f ðt;x; hðt; xÞ; 0Þ is exponentially stable.
5. The origin of the boundary-layer system dy=dt ¼ gðt; x; y þ hðt; xÞ; 0Þ is exponentially

uniformly stable in (t;x).
Then there exists e� > 0 such that, for all eoe�; the origin of Eqs. (C.1) is exponentially stable.

Appendix D

The values of gyro parameters:

ðA þ AgÞ ¼ 54 dyne cm s2; CnR ¼ 10:8
 104dyne cm s; Cd ¼ 7560 dyne cm rad�1 s;

D1 ¼
Cd

ðA þ AgÞ
¼ 130B150 rad�1s�1; D2 ¼

KT

ðA þ AgÞ
¼ 380B400 A�1 rad�2s�2;

D3 ¼
CnR

ðA þ AgÞ
¼ 2000 s�1; D4 ¼

ðA þ Bg � CgÞ
ðA þ AgÞ

¼ 1; D5 ¼ R=L ¼ 25 s�1;

D6 ¼ Ka=L ¼ 250 A rad�1 s�1; D7 ¼ K0=L ¼ 1 A rad�1:
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